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space  is g ( t )  = exp [ - ( 2 o - ) - l ( t ~ +  t 2+ t])].  Then  the 
t e m p e r a t u r e  fac tor  is given by 

T ( t ) = g ( t ) [ l + p - 1 a ] ,  

where  

a = i/3 (kBT)  -I t~ tzt 3 - ( "y + 26) (kaT)-~( t2  + t 4 + t 4) 

_2(.y 3~) (kBT) - I (  2 2 2 2 t i t2+ t~ + t~ + t2t3) 

+ 103'( kBT ) - I (  t~ + tzz + t2)cr + [ C~ (kBT)  2 ] 

I i  t 2 t 3  - -  ( + + t 2 t 3 ) o "  lit2 tlt3 

+ (t 2 + t 2 + t]) tr  2] -- i{213 ( Y +26) (  t~t2t3 + tlt52t3 

+ tl t2t~)+ 4/3(3 ' - -36)(  tlt3t 3 + t3t2 t3 + t3t3t3) 

-- ~[44  y ---~6 ]( t3 t2t3 + tl t32t3 + tl t2t3)tr 

+/3[  198 3" - -~3~6 ] t  I t2 t3  or2} 

+[ ¢ +43'6 + t + + 

+ [ 4 3 '  2 - - 4 3 ' 6  24R2-1 --2-5 u .I 

6 2 X[t6( t] + t 2) + t2( tl + t 2) + t6( t~ + t~)] 
44 2 4 4  4 4  4 4  + [ 6 3 ' 2 - ~ y 6  +~36 ] ( t i t 2 +  t2t3) t i t3+ 

+ [ 1 2 y 2 _ _ ~ y 6  48 2 . 2 . 4 . 2  2 2 4 ( tl t2t3 + Ii I2I 3 + tI t2t3) "1- ~'~6 ] 4 2 2  

[363'2+L~43'6 64 2 6 - +296 ] ( t , +  t 6+ t6)o" 

- [ 108 ,)/2 __ 20___88 3'  6 __ 48R2- I 
25 t" .I 

X[t4(t~+t32)+ 4 2 t2(t, + t2)+ t~(t2+ t2)]o " 

_[2163,2 936 o - -  8 6 4 a 2 " 1 . 2 . 2 - 2  
- -  - ~  3"O "l- -ffff O J l l I 213 Or 

+ [378r 2 + ~ r 6  + 42-~62](t 4 + t 4 + t4)o "2 

_ t _ [ 7 5 6 3 ' 2 1 7 1 6  o - - 1 4 4 o 2 1 , _ 2 . 2  2 2 2 2 2 --W-3'o-t---3--o j ( t l t 2 +  tit3 + t2t3)or 

- [  12603, 2 + 92-~62] (t~ + t~ + t~) cr3]~. 
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Abstract 

Even w h e n  direct  me thods  fail to give a c lear  solut ion,  
E maps  f r o m  some  of  the phase  sets ob ta ined  conta in  
correct ly  o r ien ted  f ragments .  It is shown tha t  such 

* Permanent address: Department of Materials Science, Institute 
of Graduate Studies and Research, University of Alexandria, 
Alexandria, Egypt. 

i n fo rma t ion  f rom several  p h a s e  sets can be ama lga -  
ma ted  by an  a u t o m a t i c  p r o c e d u r e  to give es t imates  
o f  the values  o f  t h ree -phase  invar iants .  These  esti- 
mates  are i n c o r p o r a t e d  into a modif ied  t angen t  for- 
mula  which  is used  in a new run o f  a mul t i so lu t ion  
d i rec t -methods  p rocedure .  Tests of  the total  process ,  
cal led T R I T A N ,  reveal  tha t  it is very effective in 
de te rmin ing  s t ructures  wh ich  o therwise  w o u l d  not  be 
f o u n d  rout inely .  

0108-7673/88/030349-05503.00 O 1988 International Union of Crystallography 



350 THE APPLICATION OF PHASE RELATIONSHIPS TO COMPLEX STRUCTURES. XXV 

Introduction 

It is sometimes claimed that one of the strengths of 
direct methods is that no prior knowledge of the 
structure is required for a solution to be found. 
Indeed, from time to time the structure revealed by 
a direct-methods approach is unexpected and 
different from what was supposed; in such circum- 
stances a method which relied on knowledge of the 
structure would suffer a positive handicap. 

Nevertheless, not too much should be made of this 
'strength'. There are many cases where direct methods 
have been totally unsuccessful and where a sophisti- 
cated Patterson-search technique has triumphed. 
Actually a number of workers have made use of 
structural information in the application of direct 
methods - for example, Hauptman (1964), Oda, Naya 
& Nitta (1967), Kroon & Krabbendam (1970) and 
Thiessen & Busing (1974). The most systematic 
approach has been that of Main (1976) who has 
shown that knowledge of a correctly oriented struc- 
tural fragment modifies the Cochran distribution for 
a three-phase invariant. From the fragment can be 
found a complex quantity 

Q(h,k)=[Q(h,k)lexp{iq(h,k)} (1) 

such that the structure invariant 

¢3(h, k) = q~(h) - q~(k) - q~(h- k) (2) 

has a probability distribution 

P[ ~,3(h, k)] - exp { K'(h, k) cos [¢3(h, k) - q(h, k)]} 
2¢rlo[K'(h, k)] 

(3) 

where 

K'(h,k)=21Q(h,k)E(h)E(k)E(h-k)l .  (4) 

A run of a direct-methods procedure, e.g. 
MULTAN, using a modified tangent formula which 
incorporates ]Q(h,k)l and q(h,k) often solves the 
structure when a straightforward approach would not 
do so. 

Experience has shown that E maps from phase 
sets generated by MULTAN or other direct-methods 
procedures, even when they do not show the structure, 
reveal in post hoc examination the presence of cor- 
rectly oriented structural fragments. We wish to report 
a simple and automatic procedure for using this con- 
cealed partial structure information without the need 
specifically to look at E maps. 

The TRITAN procedure 

The scenario that we are presenting is that there have 
been runs of, say, MULTAN87 (Debaerdemaeker, 
Tate & Woolfson, 1988) in all its possible modes but 
that no correct solution has been found. Entering the 

TRITAN procedure initiates the following sequence 
of calculations. 

(1) For each of n (usually six to ten) 'best' phase 
sets, as judged by the combined figure of merit 
CFOM, the E map is calculated and the largest 
chemically sensible fragment is automatically found 
with the SEARCH routine of MULTAN. 

(2) For each of the fragments partial structure 
factors are calculated, 

Sj(h)=lSj(h)lexp[i6j(h)] ( j =  1 to n), (5) 

for h corresponding to the set of large E(h) for which 
phases are required. 

(3) It is now required to find the fragment that 
bears probably the greatest resemblance to the 
complete structure. This is done by finding for each 
fragment a correlation coefficient 

where 

and 

(Iss(h) E (,h)l>. -(ISs(h)l>~(I E (h)l>. 
r j =  s 

O'j O" E 
(6) 

~ = [<l~(h)~l>-<lE(h)l>~] '~. (7b) 

The assumption made here is that the greater the 
resemblance between the fragment and the complete 
structure the closer will be the partial-structure mag- 
nitudes to a scaled version of the complete-structure 
magnitudes. If the partial set was exactly a scaled 
version of the complete set then the value of rj would 
have the maximum possible value for a linear correla- 
tion coefficient, unity, and the less its value the less 
valid is the scaling assumption. If the largest value 
of rj is for j = i then the first estimates of the three- 
phase invariants are obtained from 

l h ~3.e (  , k )  = ds,(h) - ~ , ( k )  - ~ , ( h -  k ) .  (8) 

(4) For each other fragment (j@ i) there are 
calculated 

Rj=[(sin ' ~o3,e(h, k) sin O3,j(h, k))h,k 

--(sin ~O],e(h, k))h,k(sin O3j(h, k))h,k]//ZdZj (9) 

where 

~b3d(h, k) = ~bj(h) - ~s(k) - 6 j (h -  k) (10) 

and /x~ and /xj~ are the standard deviations of the 
quantities sin ~P3,e(h, k) and sin @3.j(h, k) respectively. 

The value of Rj, which is a linear correlation 
coefficient, is theoretically constrained by the form 
of (9) to be in the range 

-I~Rs---1. (11) 
If Rj = 1 then it indicates perfect positive correlation 
of the quantities sin ~o3~.<(h, k) and sin ~b3.j(h , k) so 

~}=[<lSs(h)l=>.-<lSj(h)l>~,] '/~ (7a) 
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Table 1. Comparison of TRITAN-estimated three- 
pha4se invariants with true values 

P o s i t i v e  t r i p l e s  N e g a t i v e  t r i p l e s  
T rue  E s t i m a t e d  T r u e  E s t i m a t e d  

(o) (o) K n ( h ,  k)  (°) (o) g " ( h ,  k)  

26 4 35.2 262 56 21.7 
354 8 23.4 137 265 2.7 
346 349 45.0 209 86 3-7 

26 7 12-3 265 336 21.1 
357 344 8-9 90 31 6.5 
342 2 27"9 130 65 2"5 

2 353 27-2 182 98 2"9 
15 23 9.7 187 260 1"4 

314 0 7-4 223 64 3.2 
12 340 2"0 270 237 3"4 

344 331 4"0 199 267 3"9 
338 339 5"0 237 119 3"4 

45 348 5-3 248 324 2"7 
341 357 13"4 171 205 3.2 
352 346 28"8 97 73 1-8 
356 18 29"8 195 248 2.5 
339 352 17"7 210 213 2"5 
315 340 7"5 233 194 1"5 
357 350 4"4 258 289 2"9 

47 339 4"2 126 179 3"2 
7 357 20"4 240 295 4"6 

325 356 17.2 201 120 3-2 
8 355 5-8 227 207 0"5 

323 13 4"2 267 9 2"3 
25 9 10"1 222 277 2"3 

355 294 1"9 240 7 1"0 
324 343 27-1 180 258 3"2 

7 347 7"9 238 140 3-2 
47 4 8"1 216 258 4"0 

344 340 14"5 92 274 1-2 
52 32 1"9 262 314 2"7 

326 349 23"1 170 93 1"7 
7 13 4"1 253 119 3"8 

16 330 4-6 113 90 4"5 
47 91 2.1 212 134 1"8 

2 340 8"0 254 294 1"2 
13 271 0"8 169 97 5"9 
67 6 5"1 236 194 0-7 

299 297 1"3 204 175 2"1 
326 307 7"2 204 257 3"5 

1 349 9"5 260 340 4"8 
312 355 6"9 113 60 2"3 

19 33 3"5 270 291 3"2 
29 13 1"9 224 345 1"4 

328 1 3"1 247 227 3"4 
350 350 4"0 268 323 3"7 
342 9 2"3 211 297 5"5 

32 353 3"9 267 24 0"5 
27 9 4"6 123 28 2'8 

311 337 12"3 95 350 3-4 

that one set is just a scaled version of the other with 
a positive scaling factor. On the other hand Rj = - 1  
indicates a perfect negative correlation which can be 
transformed into a perfect positive correlation by 
taking the enantiomorph of the jth fragment which 
reverses all the values of ~b:(h) and hence of 1~3,j(h , k). 

(5) For the largest value of IRjl calculate a second 
estimate of each invariant from 

2 
t a n  ~O3,e(h , k)  : 

h sj R i ~/2Kj(h, k) sin ~t3 , j (h  , k) K~(h, k) sin ~%,e( , k) + 
1 h Kl(h, k) cos  ~03,e( , k ) +  Rjl'/2Kj(h,k) cos ~3.j(h, k) 

= T~(h, k ) / B l ( h ,  k), (12) 

where 

Kl(h,k)=2o'3cr-~3/21S,(h)S,(k)S,(h-k) I (13a) 

Kj(h,k)=2cr3cr-~3/2lSj(h)Sj(k)Sj(h-k) I. (13b) 

~rn = ~ l  z~ (zj is the atomic number of the j th atom) 
and sj is the sign of Rj. 

Equation (12) is a tangent-formula combination of 
two estimates of the three-phase invariants. The pres- 
ence of sj ensures that the estimates are from the same 
enantiomorph and IRjl 1/2 is an arbitrary, but empiri- 
cally effective, way of influencing the degree to which 
the new estimate should modify the previous one. 
The K values for these second estimates of the three- 
phase invariants are derived from 

K2(h,k)=[T~(h,k)2+ B~(h, k)2] 1/2. (14) 

(6) A chain process is now entered in which at 
each stage triple-phase estimates from each residual 
fragment are compared with the current combined 
estimates to yield values of Rj, as indicated in (9), 
followed by the estimates corresponding to the largest 
IRjl being combined with the current estimate as 
shown by (12). The weights Kin(h, k) associated with 
the invariants increase in general as m increases; thus 
at each successive stage of the chain process the effect 
of the estimates from the latest fragment, with weights 
IRjI'/2Kj(h, k), make less and less difference to the 
overall estimate. When all the fragments have been 
used there exists for each three-phase invariant an 
estimate ¢p~',e(h, k) with weights Kn(h, k). 

(7) A modified tangent formula, similar to that 
proposed by Main (1976) and also used by Olthof, 
Sint & Schenk (1979) and in the program MITHRIL 
by Gilmore (1984) is used in place of the normal one 
in a rerun of MULTAN. This tangent formula has 
the form 

¢p(h) = phase ofY~ K"(h, k) 
k 

x exp {i[~p(k)+ ¢ p ( h - k ) -  ¢p~':(h, k)]}. (15) 

Tests of TRITAN 

By their very nature, especially for small structures, 
the three-phase invariants have values tending to 
cluster around zero (modulo 2w). An ability to predict 
those which deviate significantly from zero gives 
great benefit to any phase-determining process- for 
example by using the predictions in (15). 

In Table 1 are shown predicted values of the 
three-phase invariants ~p~,e(h ,  k) with their weights 
K"(h, k) compared with the true values, q~3(h,  k ) ,  for 
the structure MUCCAR* [Bianchi, Pilati & Simonetta 
(1978): C13H~tN, P1, Z = 2]. A random selection of 
invariants would give very few with true values very 

* 1 1 - M e t h y l t r i c y c l o [ 4 . 4 . 1 . 0 1 ' 6 ] u n d e c a - 2 , 4 , 7 , 9 - t e t r a e n e - 1 1 - c a r b o -  

n i t r i le .  
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far from zero in value so 50 were randomly chosen 
from those with cos ~p3(h, k) positive (i.e. within 7r/2 
of zero) and 50 others from the group with cos ~p3(h, k) 
negative. For the 50 positive invariants the r.m.s. 
phase error of the T R I T A N  estimates is 32-1 o whereas 
the mean phase error from the usual estimate zero is 
29.8 °, so that the T R I T A N  estimates are slightly 
worse. However, for the 50 negative invariants the 
corresponding figures are 82.9 and 130.2 ° which'make 
the T R I T A N  estimates considerably better. It will 
also be noted that all the positive invariants are pre- 
dicted as positive while 25 of the negative invariants 
are predicted as negative. 

It seems that there may be useful information in 
the T R I T A N  estimates, although it is difficult to tell 
from the numbers in Table 1 just how helpful such 
information would be. We now give the results of a 
series of trials which indicate that the T R I T A N  esti- 
mates can be a very powerful aid in the actual process 
of solving crystal structures. 

Some practical trials 

The T R I T A N  procedure has been tried on several 
known structures which can be solved by direct 
methods but which present difficulties for some direct- 
methods procedures. In these trials sets of phases 
were selected which did not individually reveal the 
structures in order to see whether an amalgamation 
of information from them would give a solution. The 
structures are referred to by code names for brevity. 

C O R T I S O N E  [ Declercq, Germain & Van Meerssche 
(1972). C21H2805, P212121, Z = 4] 

Although this structure can be solved by any of the 
five procedures available in M U L T A N 8 7  there is no 
perfect solution in 100 trials with MULTANSO.  None 
of these sets of phases gave an E map showing a 
five-membered ring although several produced linked 
six-membered rings. 

The ten sets of phases with the highest values of 
CFOM were subjected to the T R I T A N  procedure. 
The amalgamated three-phase invariant estimates, 
used with the modified tangent formula (15), then 
gave six perfect solutions in 30 trials. 

M U C C A R  
For this P1 structure both M U L T A N 8 0  and 

M U L T A N 8 7  using the statistically weighted tangent 
formula (SWTF) gave poor results although the 
SA Y T A N  mode in M U L T A N 8 7  solves it quite easily. 
MULTANSO,  with the SWTF, was run for 100 trials. 
The maps corresponding to the two best CFOMs 
revealed less than one-half of the structure. Nine 
phase sets, corresponding to the third to eleventh best 
CFOMs were input into TRITAN.  In 30 trials there 
were found four perfect solutions and three others 
with only one atom missing. 

M U N I C H 4  [ Szeimes-Seebach, Harnisch, Szeimes, 
Van Meerssche, Germain & Deqlerc q (1978). 
C27H22 O, Cc, Z = 4] 

With the SWTF no solution was found in 200 trials 
of M U L T A N 8 0  and 40 trials of M U L T A N 8 7 .  The 
six phase sets with the highest values of CFOM from 
M U L T A N 8 0  were input into TRITAN. In 30 trials 
there were two perfect maps and four with only one 
atom missing. 

CINOB UFA G I N  [ Declercq, Germain & King (1977). 
C26H2706, P212121, Z = 4] 

This was originally solved with M U L T A N ,  using 
the SWTF, with great difficulty after generating 5000 
phase sets. We carried out 200 trials with the SWTF 
mode of M U L T A N 8 7  but the figures of merit were 
so poor that we did not even try to use them. Instead 
we did 50 trials with the S A Y T A N  mode of 
M U L T A N 8 7 ,  which readily solves the structure, and 
input the worst six solutions in terms of CFOM into 
TRITAN. In 30 trials there were six maps produced 
lacking only one atom. 

A Z E T  [ Colens, Declercq, Germain, Putzeys & Van 
Meerssche (1974). C2~HI6C1NO, Pca2~, Z = 8] 

Use of M U L T A N 8 7  in the SWTF mode gave noth- 
ing promising but for 50 trials in the SA Y T A N  mode 
the best map showed one-half of the structure. After 
amalgamating the information in the five phase sets 
with the highest CFOMs, in 30 trials T R I T A N  gave 
one map with four atoms missing and seven maps 
with eight or nine atoms missing. 

Concluding remarks 

We are much encouraged by our experiences with 
T R I T A N  and feel that it has a great deal to offer at 
the margin where direct methods are not giving a 
clear solution but merely tantalizing glimpses of the 
structure. It is known that from a very small fragment 
the complete structure can often be revealed (Karle, 
1968; Yao, 1983) but equally, and not so often repor- 
ted in the literature, it is possible to spend a great 
deal of time and effort with a fragment and not end 
up with the structure. T R I T A N  offers the possibility 
of strengthening the initial information put into a 
fragment-development effort even if it does not give 
a complete, or substantially complete, solution in its 
own right. 

The computer time required to implement the 
invariant-estimating part of T R I T A N  is very modest 
- much less than that for an average M U L T A N  run. 
While we hope to develop T R I T A N  further we feel 
that even at its present stage of development it is a 
useful facility to have available and it will certainly 
be introduced as a standard component of the next 
version of M U L T A N  - probably M U L T A N 8 9 .  
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Abstract 
The Sayre-equation tangent formula (SETF) develops 
sets of phases tending to satisfy Sayre's equations for 
both large and small normalized structure factors. 
There are two components in the SETF, correspond- 
ing to contributions from phase triplets and quartets 
respectively. The development of objective algorithms 
for properly weighting these components and for 
gradually building up the quartet contribution has 
enabled the SETF, within the procedure SAYTAN, 
to be incorporated into MULTAN87, the latest ver- 
sion of the package. Examples of tests of MUL- 
TAN87 and its use in solving unknown structures are 
given. 

Introduction 
In a previous paper Debaerdemaeker, Tate & 
Woolfson (1985) described the theory of a new 
tangent formula which had the property of developing 
phases tending to satisfy a system of Sayre equations. 
A particular Sayre equation can be written in terms 

0108 -7673 / 88/030353 -05503.00 

of normalized structure factors as 

E(h)=[f(b)/g(h)V]~,E(k)E(h-k)  (1) 
k 

where f(h)  and g(h) are the scattering factors for 
atoms and squared-electron-density atoms respec- 
tively and V is the volume of the unit cell. 

Phases are sought to achieve minimization of 

R = E  E(b)-[K/g(h)]Y~ E ( k ) E ( h - k )  (2) 
h k 

where K is an overall scaling factor which com- 
pensates for partial data in the k summations and the 
g(h) can be determined on theoretical grounds. 

The minimization condition is 

8R/0~0(l) =0  for all 1; 

application of this to (2), followed by some algebraic 
manipulation, gives the Sayre-equation tangent for- 
mula (SETF) 

q~(l) = phase of [t(l)-2gq(l)] (3) 
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